Dataset : The 10 parsec sample

RightsAttribution, Non Commercial, Share Alike
vignette
Collection

Quotation

Céline Reylé (2021): The 10 parsec sample. Centre des Données astronomiques de Strasbourg. doi:10.25666/DATAOSU-2021-09-09-03

General metadata

Identifier : local : FR-18008901306731-2021-09-09-03 external : doi:10.25666/DATAOSU-2021-09-09-03
Description :
Revised census of the 10 parsecs sample. The catalogue contains 540 stars, brown dwarfs, and exoplanets in 339 systems, within 10 pc from the Sun. This list is as volume-complete as possible from current knowledge and it provides benchmark stars that can be used, for instance, to define calibration samples and to test the quality of the forthcoming Gaia releases. It also has a strong outreach potential.
Discipline :
astronomy & astrophysics (sciences of the universe)
Keywords :

Dates :
Data acquisition : from 25 Jul 2014 ongoing
Data provision : 25 Apr 2021
Metadata record :
Creation : 9 Sep 2021

Update periodicity : no update
Language : English (eng)
Audience : Research, Informal Education

Coverages

Spatial coverage :

  • all sky: everywhere in the sky

Spectral coverage :

Administrative metadata

Data creatorAffiliation
Céline ReyléUTINAM (FRA)
ContributorsAffiliationRole
Gaia Data Processing and Analysis Consortium, European Space Agencydata collector
Kevin JardineRadagast Solutions (NLD)related person
Pascal FouquéIRAP (FRA)related person
José CaballeroINTA-CSIC (ESP)related person
Richard SmartINAF OATo (ITA)related person
Alessandro SozzettiINAF OATo (ITA)related person
Publisher : Centre des Données astronomiques de Strasbourg
Label : SNO GAIA
Science contact : Céline Reylé
Project and funders :
  • GAIA
    • CNES - Centre national d'études spatiales (Another national)
    • ESA - European Space Agency (Another international)
Access : available

Technical metadata

Formats : application/fits, application/x-votable+xml, text/csv, text/html
Data acquisition methods :
Datatype : Dataset

Publications

About
Terms of use
Contact
© OSU-THETA, CNRS